Future Precision Measurements and Theoretical Implications

M. Lindner

TU Munich & MPI Heidelberg

2nd Scandinavian Neutrino Workshop
May 2-6 2006, AlbaNova University Center
Stockholm, Sweden
Coming Improvements

MINOS: improved oscillation parameters
MiniBOONE ↔ LSND
L/E dependence of oscillations
KATRIN
Better $0\nu2\beta$ limits / signals
...

But why do we need precision measurements?
Solar Neutrinos: Learning About the Sun

Observables:
- **optical** (total energy, surface dynamics, sun-spots, historical records, B, ...)
- **neutrinos** (rates, spectrum, ...)

Topics:
- nuclear cross sections
- solar dynamics
- helio-seismology
- variability
- composition
Learning from Atmospheric Neutrinos

primary cosmic-ray interaction in the atmosphere

cascade of secondaries π, K

decay of secondaries

ν_μ, μ

ν_μ, ν_e

neutrinos from decays of other particles

Issues (in flux models):
- primaries (...)
- atmosphere
- cross sections
- B-fields
- shower models
- ...

M. Lindner
New Physics Beyond the SM

Experimental facts:
- Dark Matter
- Dark Energy
- Baryon asymmetry
- Neutrino masses & mixings
- Precision

Gauge bosons

- Higgs
- Quarks
- Leptons

Gauge hierarchy problem:
\[\delta m_H^2 \sim \Lambda^2 \]

Flavour problem:
- 3 generations
- Many parameters (\(m_i \), mixings)
- Unification into GUTs

\[m_\nu = (m_D)^T M_R^{-1} m_D \]

SUSY
\[\sim \text{TeV} \]

Astrophysics & cosmology

~\(\Lambda_{\text{GUT}} \) + seesaw
Precison with New Neutrino Beams

- **conventional beams, superbeams**
 - MINOS, CNGS, T2K, NO\(\nu\)A, T2H,…
- **\(\beta\)-beams**
 - pure \(\nu_e\) and \(\bar{\nu}_e\) beams from radioactive decays; \(\gamma \sim 100\)
- **neutrino factories**
 - clean neutrino beams from decay of stored \(\mu\)’s

\[
P(\nu_e \rightarrow \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin((1-\hat{A})\Delta)}{(1-\hat{A})^2}
\]

\[
\pm \sin \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}(1-\hat{A})} \sin((1-\hat{A})\Delta)
\]

\[
+ \cos \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}(1-\hat{A})} \sin((1-\hat{A})\Delta)
\]

\[
+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}
\]

- **correlations & degeneracies**
Future Long Baseline Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2K</td>
<td>finished</td>
<td>establish atmospheric oscillations with beam</td>
</tr>
<tr>
<td>MINOS OPERA</td>
<td>running</td>
<td>expected precision:</td>
</tr>
<tr>
<td></td>
<td>construction</td>
<td>8% for Δm^2_{13}, 25% for $\sin^2 \theta_{23}$, θ_{13}?</td>
</tr>
<tr>
<td>T2K</td>
<td>approved</td>
<td>4% for Δm^2_{13}, 15% for $\sin^2 \theta_{23}$, θ_{13}</td>
</tr>
<tr>
<td>NOvA</td>
<td>pre-approved</td>
<td>3% for Δm^2_{13}, 15% for $\sin^2 \theta_{23}$ (combined with T2K), θ_{13}, δ, $\text{sgn}(\Delta m^2_{13})$</td>
</tr>
<tr>
<td>T2H</td>
<td>R&D</td>
<td>precision neutrino physics</td>
</tr>
<tr>
<td>β-beams</td>
<td>R&D</td>
<td></td>
</tr>
<tr>
<td>neutrino factory</td>
<td>R&D</td>
<td></td>
</tr>
<tr>
<td>...muon collider</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- every stage is a **necessary prerequisite** for the next
- continuous line of **improvements for beams, detectors, physics**

- *Simulations with GLoBES*
- *NF & β-beam: see talk by M. Rolinec*

M. Lindner
SNOW 2006
7
Improvement of Δm^2_{31} and $\sin^2 \theta_{23}$

Δm^2_{31}-precision

$\sin^2 \theta_{23}$-precision

Huber, ML, Rolinec, Schwetz, Winter
Sensitivity Versus Time

β-beams
neutrino factory

proton
driver?

Range
⇔ ±unknown CP phase

MINOS
CNGS
D-CHOOZ
T2K
NUE
Reactor-II
NUE+FPD

Conventional beams

Reactor experiments

CHOOZ+Solar excluded

Superbeams

Year

$\sin^2 2\theta_{13}$ discovery reach (3σ)

10^{-3}

10^{-2}

10^{-1}

10^0
Precision with New Reactor Experiments

\[P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m^2_{31} L}{4E_{\nu}} + \left(\frac{\Delta m^2_{21} L}{4E_{\nu}} \right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12} \]

- \text{Double Chooz}
- \text{KASKA}
- \text{Braidwood}
- \text{Angra, ...}

no degeneracies
no correlations
no matter effects

\(\bar{\nu}_e \) near detector (170m) \(\bar{\nu}_e \) far detector (1700m)

identical detectors \Rightarrow many errors cancel
Double Chooz

existing far detector hall

... + another existing big hall!
Double Chooz and Triple Chooz

Double Chooz and Triple Chooz

\[\sin^2 2\theta_{13} \text{ sensitivity} \]

- **Chooz limit** \(< 0.20\)
- **Double Chooz** \(< 0.02\)
- **Triple Chooz** \(< 0.008\)
θ_{13} Sensitivity in the Next Generation

Sensitivity to $\sin^2 2\theta_{13}$ at 90% CL

- one order of magnitude improvement for θ_{13}
- synergies between reactor and accelerator experiments
 - reactor anti-neutrinos \Rightarrow only neutrino beams (x-section)
 - reactor: uncorrelated θ_{13} \Rightarrow combine with beams & resolve correlations
- synergy between beams \Rightarrow NOvA at larges baseline \Rightarrow matter effects

Compare:
- 5 years each
- 5% flux uncertainty

coming long baseline experiments
Double Chooz Reactor II (...Tripple Chooz)
next generation long baseline experiments
Leptonic CP-Violation

assume: $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2 \Rightarrow$ combine T2K+NOvA+reactor

- $\Delta m^2 > 0$
- $\Delta m^2 < 0$
- 90\% CL
- $\cdots \cdots \cdots 3\sigma$

- bounds or measurements of leptonic CP-violation
- leptonic CP-violation in $M_R \leftrightarrow$ baryon asymmetry via leptogenesis
Double Chooz and $0\nu2\beta$

- m_{ee} versus m_1

 for $\sin^2 2\theta_{13} = 0.2$

 for $\sin^2 2\theta_{13} = 0.03$

 \Longrightarrow Double Chooz

Bilenky, Pascoli, Petcov
Klapdor, Päs, Smirnov
...
ML, Merle, Rodejohann
precise neutrino parameters

why is this interesting?

unique flavour information
very precise: no hadronic uncertainties
apparent difference: quarks ↔ leptons
tests models / ideas about flavour
History: Elimination of SMA

Was favoured by most theorists
\(\leftrightarrow\) GUTs

preferred by nature
The Value of Precision for θ_{13}

- models of masses & mixings
- input: Known masses & mixings ➔ distribution of θ_{13} „predictions“

θ_{13} often close to experimental bounds ➔ motivates new experiments ➔ θ_{13} controls 3-flavour effects like leptonic CP-violation

for example: $\sin^2 2\theta_{13} < 0.01$ ➔

physics question: why is θ_{13} so small? ➔ numerical coincidence ➔ symmetry ➔ precision!
Further Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^\circ$, $\theta_{23} = 45^\circ$, ... \(\iff\) discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? \(\iff\) quark-lepton relation?
- quantum corrections \(\iff\) renormalization group evolution

Provides also measurements or tests of:

- **MSW effect** (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity \(\iff\) sterile neutrinos with small mixings
- neutrino decay (admixture...)
- decoherence
- NSI
- MVN, ...
The larger Picture: GUTs

Gauge unification suggests that some GUT exists

Requirements:
- gauge unification
- particle multiplets $\leftrightarrow \nu_R$
- proton decay

...
Quarks and leptons sit in the same multiplets
- one set of Yukawa coupling for given GUT multiplet
- ~ tension: small quark mixings ↔ large leptonic mixings
- this was in fact the reason for the `prediction’ of small mixing angles (SMA) – ruled out by data

Mechanisms to post-dict large mixings:
- sequential dominance
- type II see-saw
- Dirac screening
- ...
Single right-handed Dominance

\[m_D = \begin{pmatrix} . & . & . \\ . & a & b \\ . & c & d \end{pmatrix} \quad \quad \quad M_R = \begin{pmatrix} . & . & . \\ . & x & 0 \\ . & 0 & y \end{pmatrix} \]

\[m_\nu = -m_D \cdot M_R^{-1} \cdot m_D^T = \begin{pmatrix} . & . & . \\ . & \frac{a^2}{x} + \frac{b^2}{y} & \frac{ac}{x} + \frac{bd}{y} \\ . & \frac{ac}{x} + \frac{bd}{y} & \frac{c^2}{x} + \frac{d^2}{y} \end{pmatrix} \]

If one right-handed neutrino dominates, e.g. \(y >> x \)

- Small sub-determinant \(\sim m_2 \cdot m_3 \)
- \(m_2 << m_3 \) i.e. a natural hierarchy
- \(\tan \theta_{23} \sim a/c \) i.e. naturally large mixing
Sequential Dominance

\[m_D = \begin{pmatrix} a & b & c \\ d & e & f \\ g & e & h \end{pmatrix} \quad M_R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \]

\[m_\nu = -m_D \cdot M_R^{-1} \cdot m_D^T = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \]

sequential dominance: \(z >> y >> x \)

- small determinant \(\sim m_1 \cdot m_2 \cdot m_3 \)
- \(m_1 \ll m_2 \ll m_3 \) natural
- naturally large mixings

S.F. King
Large Mixings and See-Saw Type II

\[m_\nu = M_L - m_D M_R^{-1} m_D^T \]

see-saw type II

\(m_D \) and \(M_R \) may possess small mixings and hierarchy

However: \(M_L \) can be numerically more important

Example: Break GUT \(\rightarrow \) SU(2)_L \times SU(2)_R \times U(1)_{B-L} \(\Rightarrow \) \(M_L \) from LR

\(\Rightarrow \) large mixings natural for almost degenerate case \(m_1 \sim m_2 \sim m_3 \)

\(\Rightarrow \) type I see-saw would only be a correction

type I – type II interference

\(\Rightarrow M_L \simeq m_D M_R^{-1} m_D^T \)

\(\Rightarrow \) many possibilities
Dirac Screening

Question: Do neutrino masses always depend on the Dirac Yukawa couplings? ➔ **no**

Assume: ν_L, ν^C_R, S ➔

$$
\mathcal{M} = \begin{pmatrix}
0 & Y_\nu \langle \phi \rangle & 0 \\
Y_\nu^T \langle \phi \rangle & 0 & Y_N^T \langle \sigma \rangle \\
0 & Y_N \langle \sigma \rangle & M_S
\end{pmatrix}
$$

➔ double seesaw

$$m_\nu^0 = \left[\frac{\langle \phi \rangle}{\langle \sigma \rangle} \right]^2 Y_\nu (Y_N)^{-1} M_S (Y_N^T)^{-1} Y_\nu^T$$

fit fermions into GUT representations ➔ relation between Yukawa couplings, e.g. E6

$Y_\nu = c \cdot Y_N$
Consequences of Dirac Screening

- Complete screening of Dirac structure

\[m_\nu = e^2 \left(\frac{\langle \phi \rangle}{\langle \sigma \rangle} \right)^2 M_S \]

Outcome:

- Neutrino masses can emerge completely from Planck scale physics ↔ generically different
- Dirac Yukawa structure (small mixings) screened
- Hierarchical neutrino spectrum not required in see-saw
- Quark-lepton complimentarity possible … …with or without degenerate neutrino masses

- Double see-saw predicts for \(M_R \) to be below \(M_{\text{GUT}} \)
 - First see-saw \(M_R \sim \langle s \rangle / M_S \sim 10^{-3} M_{\text{GUT}} \sim 10^{13} \text{ GeV} \)
Flavour Unification

- so far no understanding of flavour, 3 generations
- apparent regularities in quark and lepton parameters
 ➤ flavour symmetries
 ➤ not texture zeros

Examples:

- $O(3)_L \times O(3)_R$
- $SU(3)$
- $SU(2)$
- $U(1)$
- $SO(3)$
- $S(3)_L \times S(3)_R$
- $A_4; Z_3 \approx Z_2$
- $S(3)$
- Nothing

Table:

<table>
<thead>
<tr>
<th>Quarks</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2/3</td>
<td>-1/3</td>
<td>2/3</td>
</tr>
<tr>
<td>d</td>
<td>-1/3</td>
<td>-1/3</td>
<td>-1/3</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leptons</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_1</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
<tr>
<td>ν_2</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
<tr>
<td>ν_3</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
<tr>
<td>e</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
<tr>
<td>μ</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
<tr>
<td>τ</td>
<td>-0.511</td>
<td>-1.055</td>
<td>-1.777</td>
</tr>
</tbody>
</table>
Discrete Flavour Symmetries ↔ flavour structure
Example: Dihedral groups D_n

\[\langle A, B | A^n = 1, B^2 = 1, (AB)^n = 1 \rangle \]

geometric origin of D_3
Specific Example: D_5

$< A, B | A^n = 1, B^2 = 1, (AB)^n = 1 >$

complex generators

21: $A = \begin{pmatrix} e^{i \frac{2\pi}{5}} & 0 \\ 0 & e^{-i \frac{2\pi}{5}} \end{pmatrix}$ \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

22: $A = \begin{pmatrix} e^{i \frac{4\pi}{5}} & 0 \\ 0 & e^{-i \frac{4\pi}{5}} \end{pmatrix}$ \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

character table

<table>
<thead>
<tr>
<th>classes</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{C_1}</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>n_{C_1}</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1_2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2_1</td>
<td>2</td>
<td>0</td>
<td>$\frac{1}{2}(-1 + \sqrt{5})$</td>
<td>$\frac{1}{2}(-1 - \sqrt{5})$</td>
</tr>
<tr>
<td>2_2</td>
<td>2</td>
<td>0</td>
<td>$\frac{1}{2}(-1 - \sqrt{5})$</td>
<td>$\frac{1}{2}(-1 + \sqrt{5})$</td>
</tr>
</tbody>
</table>

Kronecker products

$1_1 \times 1_1 = 1_1$
$1_2 \times 1_1 = 1_2$
$2_1 \times 1_1 = 2_1$
$2_2 \times 1_1 = 2_2$
$1_2 \times 1_2 = 1_1$
$2_1 \times 1_2 = 2_1$
$2_2 \times 1_2 = 2_2$
$2_1 \times 2_1 = 1_1 + 1_2 + 2_2$
$2_2 \times 2_1 = 2_1 + 2_2$
$2_2 \times 2_2 = 1_1 + 1_2 + 2_1$

Clebsch-Gordan Coefficients …
D$_5$ Allowed Mass Terms

Task: search for mass terms which are suitable Higgs singlets under D$_5$

Notation:
\(i_{th} \) generation fermions

\[L = \{ L_1, L_2, L_3 \} \]

Dirac mass terms:
\[\lambda_{ij} L_i^T (i\sigma_2) \phi L_j^c \]

Majorana mass terms:
\[\lambda_{ij} L_i^T \equiv \phi L_j \]

with
\[\equiv = \begin{pmatrix} \xi^0 & -\frac{\xi^+}{\sqrt{2}} \\ -\frac{\xi^+}{\sqrt{2}} & \xi^{++} \end{pmatrix} \]
Resulting D$_5$ Symmetry Texture

<table>
<thead>
<tr>
<th>L</th>
<th>L^C</th>
<th>Mass Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1_2, 1_1, 1_1)$</td>
<td>$(2_1, 1_1)$</td>
<td>$egin{pmatrix} \kappa_1 \psi_2^1 & -\kappa_1 \psi_1^1 & \kappa_4 \phi^2 \ \kappa_2 \psi_2^1 & \kappa_2 \psi_1^1 & \kappa_5 \phi^1 \ \kappa_3 \psi_2^1 & \kappa_3 \psi_1^1 & \kappa_6 \phi^1 \end{pmatrix}$</td>
</tr>
</tbody>
</table>

D$_5$ singlet mass terms require the following quantum numbers for the scalars:

\[\phi_1 \sim 1_1 , \]
\[\phi_2 \sim 1_2 \text{ and} \]
\[\psi_1 \sim 2_1 . \]

➤ Check if phenomenological successful predictions arise
GUT *and* Flavour Unification

Example: SO(10) x SU(3)

- up-type quarks
- down-type quarks
- charged leptons
- neutrinos

\[
\begin{align*}
&u \times 10^{-3} \\
&d \times 10^{-3} \\
&e \times 10^{-3} \\
&\nu_1 \times 10^{-12} \\
&\nu_2 \times 10^{-12} \\
&\nu_3 \times 10^{-11} \\
&\mu \times 10^{-2} \\
&\tau \times 10^{-1} \\
&c \times 10^{-1} \\
&s \times 10^{0} \\
&b \times 10^{1} \\
&t \times 1 \end{align*}
\]

\[SU(3)\]
\[SO(10)\]
GUT \times Flavour Unification

- GUT group \times continuous, gauged flavour group
 - for example $SO(10) \times SU(3)_{\text{flavour}}$
 - Generations are 3_F
 - SSB of $SU(3)_{\text{flavour}}$ between Λ_{GUT} and Λ_{Planck}
 - all flavour Goldstone Bosons eaten
 - discrete (ungauged) sub-group survives \leftrightarrow SSB potential
 - e.g. Z_2, S_3, D_5, A_4, ...
 - structures in flavour space

GUT \times flavour is rather restricted
 - small quark mixings
 - large leptonic mixings

- from unified GUT \times flavour representations
GUT ⊗ Flavour Challenges

- Difficulty grows with
 - size of flavour symmetry
 - size of the GUT group

⇒ so far only a few viable models
 e.g. \(\text{SO}(10) \otimes S_4 \) \(\text{Hagedorn, ML, Mohapatra} \)

⇒ limited number of possibilities

⇒ phenomenological success non-trivial

Aim: Distinguish models by future precision
Conclusion: The Interplay of Topics

SM extensions: SUSY, …
flavour symmetries
unification
fundamental interactions
CPT & Lorentz inv.
extra dimensions
…

leptogenesis
supernovae
BBN
structure formation, UHE neutrinos
dark matter & energy
…

precision
neutrino properties:
masses, mixings,
CP-phases, ...

mass spectrum, mixings, CP-phases, lepton flavour violation, 0ν2β–decay, ...

⇒ ν-parameters extremely valuable
⇒ long term: most precise flavour info

M. Lindner
SNOW 2006
35