First MINOS Results from the NuMI Beam

- Elisabeth Falk Harris
 University of Sussex
- On behalf of the MINOS Collaboration
- SNOW 2006, Stockholm, 2-6 May 2006
Outline

Introduction to the MINOS experiment
- Overview of MINOS physics goals
- The NuMI facility and the MINOS detectors

Near Detector and beam measurements
- Selecting CC muon neutrino events
- Near Detector distributions and comparison with Monte Carlo

Far Detector analysis
- Selecting beam neutrino candidates
- Near-Far extrapolation of the neutrino flux
- Oscillation analysis with 0.93×10^{20} POT
The MINOS Experiment

- **Main Injector Neutrino Oscillation Search**
- Accelerator-based long-baseline neutrino experiment
- Precision experiment at the atmospheric Δm^2
- One ν_μ beam: NuMI
 - 120 GeV protons from Fermilab Main Injector
- **Two detectors**
 - Near Detector: measure beam composition and spectrum
 - Far Detector: search for evidence of oscillations
MINOS Physics Goals

- Verify $\nu_\mu \to \nu_\tau$ mixing hypothesis
 - Make a precise ($< 10\%$) measurement of the oscillation parameters Δm^2_{23} and $\sin^2 2\theta_{23}$

- Search for subdominant $\nu_\mu \to \nu_e$ oscillations

- Search for/rule out exotic phenomena
 - Sterile neutrinos
 - Neutrino decay

- First measurement of ν vs. $\bar{\nu}$ oscillations – CPT test
 - First large underground detector with magnetic field
 - Atmospheric neutrino oscillations:

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix} =
\begin{pmatrix}
 U_{e1} & U_{e2} & U_{e3} \\
 U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
 U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

Δm^2_{23}

$\sin^2 2\theta = 4U_{\mu 3}^2 (1 - U_{\mu 3}^2)$

if $\Delta m^2_{23} >> \Delta m^2_{12}$
Oscillation Measurement

Look for a deficit of ν_μ events at Soudan...

\[P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2 2\theta \sin^2 \left(1.267 \Delta m^2 L / E \right) \]

Allowed regions from Super-K and K2K

Current best measurements of Δm^2_{23} and $\sin^2 2\theta_{23}$ are provided by Super-Kamiokande (atmospheric neutrino analysis) and K2K (9x10^{19} pot)

E. Falk Harris, U. Sussex
The NuMI Facility

Design parameters:

- 120 GeV protons from the Main Injector
- 1.9 second cycle time
- 4×10^{13} protons/pulse
- 10 µs spill (single-turn extraction)
- 0.4 MW
The NuMI Beam

- Graphite target
- Magnetic focusing horns
- Target moveable relative to horn 1: continuously variable neutrino spectrum
The NuMI Beam

- Currently running in the LE-10 configuration
- \(\sim 1.5 \times 10^{19} \) POT in pME and pHE configurations early in the run for commissioning and systematics studies

\[98.5\% \mu^+ + \mu^- \left(6.5\% \mu^- \right) \]
\[1.5\% e^+ + e^- \]

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target z position (cm)</th>
<th>FD Events per 1e20 pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE-10</td>
<td>-10</td>
<td>390</td>
</tr>
<tr>
<td>pME</td>
<td>-100</td>
<td>970</td>
</tr>
<tr>
<td>pHE</td>
<td>-250</td>
<td>1340</td>
</tr>
</tbody>
</table>

Events expected in fiducial volume (no osc.)
First Year of Running

Observation of neutrinos in Near Detector!

Dataset used for the oscillation analysis

2.3 \times 10^{13} \text{ protons/pulse} \text{ averaged for 15 Oct to 31 Jan (2.2 s cycle)}
The MINOS Detectors

Steel/scintillator tracking calorimeters
Functionally identical

- 1 km from target
- 1 kton
- 282 steel planes
- 153 scintillator planes

- 735 km from target
- 5.4 kton
- 484 steel/scintillator planes

Magnetised to 1.2 T
GPS time-stamping to synchronise FD data to ND/beam
Detector Technology

- 2.54 cm steel planes
- 1 cm thick, 4 cm wide plastic scintillator strips
- Orthogonal orientation on alternate planes (U, V)
- Wavelength-shifting fibre-optic readout
- Multi-anode PMTs
MINOS Calibration System

- Calibration of ND and FD response using:
 - Light Injection system (PMT gain)
 - Cosmic ray muons (strip to strip and detector to detector)
 - Calibration detector (overall energy scale)

- Energy scale calibration:
 - 1.9% absolute error in ND
 - 3.5% absolute error in FD
 - 3% relative
Event Topologies

ν_μ CC Event

Long μ track + hadronic activity at vertex

NC Event

Short event, often diffuse

ν_e CC Event

Short, with typical EM shower profile

$E_\nu = E_{\text{shower}} + P_\mu$

55%/\sqrt{E}

6% range, 10% curvature
Selecting CC Events

A pure sample of ν_μ is selected by:
1. Find events coincident in time with beam spill
2. A well-reconstructed track is found
3. Vertex is within fiducial region
4. Track curvature is consistent with negative muon
5. Cut on likelihood-based particle ID

• Three input Probability Density Functions (PDFs):
 event length, fraction of event pulse height in the reconstructed track, average track pulse height per plane

Input variables for PDF-based event selection
CC Selection Efficiencies

- Particle ID (PID) parameter:
 \[PID = -\left(\sqrt{-\log(P_\mu)} - \sqrt{-\log(P_{NC})}\right) \]

- CC-like events: PID > -0.2 in the FD (> 0.1 in the ND)
 - NC contamination limited to bins below 1.5 GeV
 - Selection efficiency quite flat as a function of visible energy

PDF PID parameter distribution for true CC and NC events

CC selection efficiencies and purities

Monte Carlo

- Efficiency (87%)
- Purity (97%)

E. Falk Harris, U. Sussex
SNOW 2006 Stockholm
Near Detector Distributions

- Very large event rates in the Near Detector (~10^7 events in the fiducial volume for 10^{20} POT)

→ High-statistics dataset:
 - Understand performance of Near Detector
 - Check level of agreement between data and Monte Carlo

Distribution of reconstructed event vertices in the x-y plane

Reconstructed track angle with respect to vertical

Beam points down 3 degrees to reach Soudan
Particle ID Variables and PID Parameter

Event length
- LE-10 beam
- Data: Mean 84.27, RMS 72.02
- MC: Mean 84.49, RMS 72.34

Track pulse height per plane
- Data: Mean 1037, RMS 608.3
- MC: Mean 1025, RMS 579.3

Track pulse height fraction
- Data: Mean 0.6017, RMS 0.256
- MC: Mean 0.5907, RMS 0.249

PID parameter
- Data: Mean 0.3565, RMS 0.4516
- MC: Mean 0.3581, RMS 0.4474

E. Falk Harris, U. Sussex

SNOW 2006 Stockholm
Hadron Production Tuning

Agreement between data and Fluka05 Beam MC pretty good, but by tuning the MC by fitting to hadronic x_F and p_T, improved agreement can be obtained.

Weights applied as a function of hadronic x_F and p_T. LE-10/Horns off not used in the fit.
Far Detector Beam Analysis

- Oscillation analysis performed using data taken in the LE-10 configuration from 20 May to 6 Dec 2005
 - Total integrated POT: 0.93×10^{20}
 - POT-weighted FD live time: 98.9%

- Blind analysis
 - Unknown fraction of Far Detector events hidden (based on event length and total energy deposition)
 - “Open” set examined to confirm that there are no problems with FD data
 - Oscillation analyses pre-defined and validated on MC
 - When satisfied that FD data and analysis methods are OK:
 “open the box” and perform final analysis on total sample
 - No re-tuning of cuts allowed after box opening
Selecting Beam Events

- Time-stamping of the neutrino events provided by two GPS units (located at Near and Far Detector sites)
 - FD spill trigger reads out 100 μs of activity around beam spills
- Far Detector neutrino events easily separated from cosmic muons (0.5 Hz) using topology

Backgrounds were estimated by applying selection algorithm on “fake” triggers taken in anti-coincidence with beam spills.

In 2.6 million “fake” triggers, 0 events survived the selection cuts (upper limit on background in open sample is 1.7 events at 90% C.L.)
Predicting the Un-Oscillated FD Spectrum

- Directly use the Near Detector data to perform extrapolation between Near and Far
- Use Monte Carlo to provide necessary corrections due to energy smearing and acceptance
- Use our knowledge of pion decay kinematics and the geometry of our beamline to predict the FD energy spectrum from the measured ND spectrum

\[\text{Flux} \propto \frac{1}{L^2} \left(\frac{1}{1 + \gamma^2 \theta^2} \right)^2 \]

\[E_\nu = \frac{0.43 E_\pi}{1 + \gamma^2 \theta^2} \]

Known as the Beam Matrix Method
Near to Far Extrapolation

Beam matrix holds our knowledge of two-body pion decay kinematics and geometry.
Alternative Methods to Predict FD Spectrum

- Three other methods to derive FD spectrum from ND data:
 - Extrapolation using Far/Near ratio from MC
 - Fitting to ND data → derive systematic parameters → reweight FD MC
 - Two independent methods: “NDfit” and “2d Grid Fit”

- Above methods have quite different sensitivities to systematic errors
 - Comparing results from all four provides good check of robustness of oscillation measurement
Vertex Distributions

FD box opening 4 March 2006!

- 296 selected events with a track - no evidence of background contamination
- Distribution of selected events consistent with neutrino interactions (uniform distribution of event vertices)
Physics Distributions

Muon momentum (GeV/c)

Shower energy (GeV)

\[y = \frac{E_{\text{shw}}}{E_{\text{shw}} + P_{\mu}} \]
Numbers of Events

<table>
<thead>
<tr>
<th>Data sample</th>
<th>observed</th>
<th>expected</th>
<th>ratio</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All CC-like events ($\nu_\mu + \bar{\nu}_\mu$)</td>
<td>204</td>
<td>298±15</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>ν_μ only (<30 GeV)</td>
<td>166</td>
<td>249±14</td>
<td>0.67</td>
<td>4.0σ</td>
</tr>
<tr>
<td>ν_μ only (<10 GeV)</td>
<td>92</td>
<td>177±11</td>
<td>0.52</td>
<td>5.0σ</td>
</tr>
</tbody>
</table>

- 33% deficit of events between 0 and 30 GeV with respect to no-oscillation expectation
- **Rate-only significance: 5 standard deviations**
Best-Fit Spectrum

Oscillation Results for 0.93E20 p.o.t

\[\chi^2 (\Delta m^2, \sin^2 2\theta) = \sum_{i=1}^{\text{nbins}} 2(e_i - o_i) + 2o_i \ln(o_i / e_i) \]

- \[\Delta m_{23}^2 = 0.00305^{+0.00060}_{-0.00055} \]
- \[\sin^2(2\theta_{23}) = 0.88^{+0.12}_{-0.15} \]
- \[\chi^2 / \text{n.d.f.} = 20.5/13 = 1.6 \]
- \[1-P(\chi^2, \text{n.d.f.}) = 8.3\% \]

- No disappearance hypothesis
 - \[\chi^2 / \text{n.d.f.} = 70.0/15 = 4.7 \]
 - \[1-P(\chi^2, \text{n.d.f.}) = 4.5e-09 \]

E. Falk Harris, U. Sussex

SNOW 2006 Stockholm
Ratio Data/MC

Data

Best-fit

NC subtracted

Reconstructed Neutrino Energy
Allowed Regions

\[\chi^2 / \text{n.d.f.} = 20.5 / 13.0 = 1.6 \]

- MINOS Best Fit: Matrix Method
- MINOS Best Fit: NDfit Method
- MINOS Best Fit: F/N ratio Method
- MINOS Best Fit: 2D Grid Method
- MINOS 68% C.L.
- MINOS 90% C.L.

SuperK 90% C.L.
Super-K (L/E)
K2K 90% C.L.
Systematic Errors

Systematic shifts in the fitted parameters computed with MC “fake data” samples for $\Delta m^2 = 0.003 \text{ eV}^2$, $\sin^2 \theta = 0.9$:

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Δm^2 shift (eV2)</th>
<th>$\sin^2 \theta$ shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalisation +/- 4%</td>
<td>0.63e-4</td>
<td>0.025</td>
</tr>
<tr>
<td>Muon energy scale +/- 2%</td>
<td>0.14e-4</td>
<td>0.020</td>
</tr>
<tr>
<td>Relative Shower energy scale +/- 3%</td>
<td>0.27e-4</td>
<td>0.020</td>
</tr>
<tr>
<td>NC contamination +/- 30%</td>
<td>0.77e-4</td>
<td>0.035</td>
</tr>
<tr>
<td>CC cross-section uncertainties</td>
<td>0.50e-4</td>
<td>0.016</td>
</tr>
<tr>
<td>Beam uncertainty</td>
<td>0.13e-4</td>
<td>0.012</td>
</tr>
<tr>
<td>Intranuclear re-scattering</td>
<td>0.27e-4</td>
<td>0.030</td>
</tr>
<tr>
<td>Total (sum in quadrature)</td>
<td>1.19e-4</td>
<td>0.063</td>
</tr>
<tr>
<td>Statistical error (data)</td>
<td>6.4e-4</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Projected Sensitivity

Improve this measurement:
Sensitivity at 16×10^{20} POT

- Study neutrino/anti-neutrino oscillations
- Search for/rule out exotic phenomena:
 - Sterile neutrinos, neutrino decay

Search for sub-dominant $\nu_\mu \rightarrow \nu_e$ oscillations

$$\Delta m^2 = 0.003 \text{ eV}^2$$
Summary and Conclusions

- MINOS has performed a preliminary oscillation analysis of 0.93×10^{20} protons on target
- No disappearance disfavoured at 5.8σ (shape + rate); 5σ (rate only)
- Consistent with ν oscillation results, with parameters:

\[
\Delta m^2_{23} = 3.05^{+0.60}_{-0.55} (\text{stat}) \pm 0.12 (\text{syst}) \times 10^{-3} \text{eV}^2 \\
\sin^2 2\theta_{23} = 0.88^{+0.12}_{-0.15} (\text{stat}) \pm 0.06 (\text{syst})
\]

- Measurement is statistically limited; systematics under control
- Significant improvements expected with more data
 - Total exposure to date: 1.4×10^{20} POT
Backup slides
Overview of the Oscillation Measurement

- In order to perform the oscillation analysis, we need to predict the neutrino beam spectrum seen by the Far Detector in the absence of oscillations.

- Want to minimise uncertainties related to beam modelling and cross-sections (nominal values are built-in to our Monte Carlo).

- Use the Near Detector data to correct the nominal Monte Carlo:
 - Beam spectrum
 - Neutrino cross-sections
Current Knowledge of Atmospheric Neutrino Oscillations

- Current best measurements of Δm^2_{23} and $\sin^2 2\theta_{23}$ from Super-Kamiokande (atmospheric neutrino analysis) and K2K (9×10^{19} pot)

- The limits (at 90% C.L.) are:
 - $\sin^2 2\theta > 0.9$
 - $1.9 < \Delta m^2 < 3.0 \times 10^{-3} \text{ eV}^2$

- This analysis is for 9.3×10^{19} POT, and should provide a competitive measurement of the mixing parameters

Allowed regions from Super-K and K2K
Event Selection Cuts

ν_μ CC-like events:

1. Event must contain at least one good reconstructed track
2. Reconstructed track vertex within fiducial volume of detector

Near Detector:
- $1 \text{ m} < z < 5 \text{ m}$ (from detector front),
- $R < 1 \text{ m}$ from beam centre

Far Detector:
- $z > 50 \text{ cm}$ from front face,
- $z > 2 \text{ m}$ from rear face,
- $R < 3.7 \text{ m}$ from detector centre

3. Fitted track should have negative charge (selects ν_μ)
4. Separation of CC from NC events: cut on likelihood-based Particle ID parameter
Selecting CC Events

- Events selected by likelihood-based procedure
 Three input probability density functions (PDFs):
 • Event length in planes
 • Fraction of event pulse height in the reconstructed track
 • Average track pulse height per plane

- Define $P_\mu (P_{NC})$ as the product of the three CC (NC) PDFs, at the values of these variables taken by the event

Input variables for PDF-based event selection

- Event length (planes)
- Track pulse height fraction
- Track pulse height per plane
Near detector rate and event vertices – LE-10 beam

- Event rate is flat as a function of time
- Horn current scans – July 29 – Aug 3
Stability of Energy Spectrum & Reconstruction with Intensity

Proton intensity ranges from $1e13$ ppp to $2.8e13$ ppp

Reconstructed energy distributions agree to within statistical uncertainties (~1-3%)

Beam is very stable and there are no significant intensity-dependent biases in event reconstruction

E. Falk Harris, U. Sussex
Summary of ND Data/MC Agreement

- No obvious pathologies introduced by detector modelling and/or reconstruction

- Agreement between high-level quantities is within expected systematic uncertainties from cross-section modelling, beam modelling and calibration uncertainties
 - Initial agreement improved after applying beam reweighting on the xF and pT of parent hadrons in the Monte Carlo
Predicted True FD Spectrum

- Higher than nominal FD MC in high-energy tail
- Expected, given that the ND spectrum is also higher than the nominal MC in this region
Far Detector Beam Analysis

Oscillation analysis performed using data taken in the LE-10 configuration from 20 May to 6 Dec 2005

- Total integrated POT: 0.93×10^{20}
- Excluded periods of “bad data”: coil and HV trips, periods without accurate GPS timestamps
 - Effect of these cuts is small: ~0.7% of total POT
- POT-weighted live-time of the Far Detector: 98.9%
Blind Analysis

- **Blind-analysis policy for the first accelerator-neutrino results**
 - Unknown fraction of Far Detector events hidden (based on event length and total energy deposition)

- **No blinding of Near Detector data**

- **Unknown fraction of Far Detector data open**
 - Performed extensive data quality checks

- **Unblinding criteria:**
 - No problems with the Far Detector beam dataset (missing events, reconstruction problems, etc.)
 - Oscillation analysis (cuts and fitting procedures) pre-defined and validated on MC; no re-tuning of cuts allowed after box opening
Particle ID Variables (LE-10 Beam)

Event length

- Data
- MC

RMS 72.02
Mean 84.49
RMS 72.34
Mean 84.27

Track PH per plane

- Data
- MC

RMS 608.3
Mean 1025
RMS 579.3
Mean 1037

Calorimeter/spectrometer boundary

Track PH fraction

- Data
- MC

RMS 0.256
Mean 0.5907
RMS 0.249
Mean 0.6017
PID Parameter

PID cut to select CC-like events is at -0.1.

- **LE-10**: Mean 0.3565, RMS 0.4516
- **pME**: Mean 0.3581, RMS 0.4474
- **pHE**: Mean 0.4093, RMS 0.5112

E. Falk Harris, U. Sussex

SNOW 2006 Stockholm
Energy Spectra & Ratios (CC-like events)

Reconstructed energy (GeV)

Error envelopes shown on the plots reflect uncertainties due to cross-section modelling, beam modelling and calibration uncertainties.

E. Falk Harris, U. Sussex

SNOW 2006 Stockholm
Box Opening

- Collaboration agreed on 4 March 2006 to open the box
 - Sufficient confidence in FD data
 - Analysis methods fully validated on MC datasets

Far Detector Data (full dataset)

MINOS PRELIMINARY

- Selected events
- Selected fiducial events with tracks
Track Quantities and PID Parameter

Track length

- **Mean**: 86.05
- **RMS**: 71.48

Track pulse height per plane

- **Mean**: 824.8
- **RMS**: 345.8

Particle identification parameter

- **Mean**: 0.3137
- **RMS**: 0.5544
Track Angles

Notice that beam is pointing 3 degrees up at Soudan!
Breakdown of Selected Events

<table>
<thead>
<tr>
<th>Cut</th>
<th>Events</th>
<th>efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events in fiducial vol</td>
<td>331</td>
<td>-</td>
</tr>
<tr>
<td>Events with a track</td>
<td>296</td>
<td>89.1%</td>
</tr>
<tr>
<td>Track quality cuts</td>
<td>281</td>
<td>95.3%</td>
</tr>
<tr>
<td>PID cut (CC-like)</td>
<td>204</td>
<td>72.9%</td>
</tr>
<tr>
<td>Track charge sign cut (negative muons only)</td>
<td>186</td>
<td>91.2%</td>
</tr>
<tr>
<td>Reconstructed energy < 30 GeV</td>
<td>166</td>
<td>89.2%</td>
</tr>
</tbody>
</table>